Nerve and behavioral responses of mice to various umami substances.
نویسندگان
چکیده
Food contains various taste substances. Among them, umami substances play an important role with regard to the perception of the taste of food, but, few studies have examined the taste characteristics of representative umami substances other than monosodium L-glutamate (MSG). By conducting mouse behavioral studies (the 48-h 2-bottle preference test and the conditioned taste aversion test) and assessing gustatory nerve responses, we investigated the taste characteristics of unique umami substances, including sodium succinate, L-theanine, betaine, and the enantiomer of MSG, D-MSG. Furthermore, we examined the synergy of umami with inosine 5'-monophoshate (IMP). In the case of the mice, sodium succinate had an umami taste and showed strong synergy with IMP. L-theanine showed synergy with IMP but did not have an umami taste without IMP. In contrast, betaine did not have an umami taste or synergy with IMP. D-MSG might have weak synergy with IMP.
منابع مشابه
Multiple receptors underlie glutamate taste responses in mice.
l-Glutamate is known to elicit a unique taste, umami, that is distinct from the tastes of sweet, salty, sour, and bitter. Recent molecular studies have identified several candidate receptors for umami in taste cells, such as the heterodimer T1R1/T1R3 and brain-expressed and taste-expressed type 1 and 4 metabotropic glutamate receptors (brain-mGluR1, brain-mGluR4, taste-mGluR1, and taste-mGluR4)...
متن کاملAbnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor.
Inositol 1,4,5-trisphosphate receptor (IP3R) is one of the important calcium channels expressed in the endoplasmic reticulum and has been shown to play crucial roles in various physiological phenomena. Type 3 IP3R is expressed in taste cells, but the physiological relevance of this receptor in taste perception in vivo is still unknown. Here, we show that mice lacking IP3R3 show abnormal behavio...
متن کاملDefects in the Peripheral Taste Structure and Function in the MRL/lpr Mouse Model of Autoimmune Disease
While our understanding of the molecular and cellular aspects of taste reception and signaling continues to improve, the aberrations in these processes that lead to taste dysfunction remain largely unexplored. Abnormalities in taste can develop in a variety of diseases, including infections and autoimmune disorders. In this study, we used a mouse model of autoimmune disease to investigate the u...
متن کاملCALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.
Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preferenc...
متن کاملSarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception
The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular event...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioscience, biotechnology, and biochemistry
دوره 75 11 شماره
صفحات -
تاریخ انتشار 2011